Target Sum
Problem
You are given an integer array nums
and an integer target
.
You want to build an expression out of nums by adding one of the symbols '+'
and '-'
before each integer in nums and then concatenate all the integers.
- For example, if
nums = [2, 1]
, you can add a'+'
before2
and a'-'
before1
and concatenate them to build the expression"+2-1"
.
Return the number of different expressions that you can build, which evaluates to target
.
Example 1:
Input: nums = [1,1,1,1,1], target = 3 Output: 5 Explanation: There are 5 ways to assign symbols to make the sum of nums be target 3. -1 + 1 + 1 + 1 + 1 = 3 +1 - 1 + 1 + 1 + 1 = 3 +1 + 1 - 1 + 1 + 1 = 3 +1 + 1 + 1 - 1 + 1 = 3 +1 + 1 + 1 + 1 - 1 = 3
Example 2:
Input: nums = [1], target = 1 Output: 1
Constraints:
1 <= nums.length <= 20
0 <= nums[i] <= 1000
0 <= sum(nums[i]) <= 1000
-1000 <= target <= 1000
Solution
/**
* @param {number[]} nums
* @param {number} target
* @return {number}
*/
var findTargetSumWays = function(nums, target) {
const sum = nums.reduce((acc, cur) => acc + cur, 0);
const dp = Array(nums.length)
.fill(null)
.map(() => Array(sum * 2 + 1).fill(0));
dp[0][nums[0] + sum] += 1;
dp[0][-nums[0] + sum] += 1;
for (let i = 1; i < nums.length; i++) {
for (let j = -sum; j <= sum; j++) {
const sumIndex = j + sum;
dp[i][sumIndex] += dp[i - 1]?.[sumIndex + nums[i]] ?? 0;
dp[i][sumIndex] += dp[i - 1]?.[sumIndex - nums[i]] ?? 0;
}
}
return dp[nums.length - 1]?.[target + sum] ?? 0;
};
We will implement a DP solution. Let dp[i][j]
be the number of ways to add up to j
using nums[0:i + 1]
.
- For the base case, if
i = 0
, then usingnums[0:1]
there is one way to sum upnums[0:1]
and one way to sum up-nums[0:1]
(all other sum has0
ways to be summed up). - For the recursive case, the number of ways to add up to
j
is the number of ways that adds up toj ± nums[i]
(ie. usingnums[i]
we can add up toj
), but not including the current valuenums[i]
(ie.dp[i - 1][j ± nums[i]]
).
Note that in the actual code, since we can't have negative indices, for dp
to be in range of [-sum, sum]
, we shift each index by sum
(ie. indices [0, 2 * sum]
maps to values [-sum, sum]
).