Implement Trie (Prefix Tree)
Problem
A trie (pronounced as "try") or prefix tree is a tree data structure used to efficiently store and retrieve keys in a dataset of strings. There are various applications of this data structure, such as autocomplete and spellchecker.
Implement the Trie class:
Trie()
Initializes the trie object.void insert(String word)
Inserts the stringword
into the trie.boolean search(String word)
Returnstrue
if the stringword
is in the trie (i.e., was inserted before), andfalse
otherwise.boolean startsWith(String prefix)
Returnstrue
if there is a previously inserted stringword
that has the prefixprefix
, andfalse
otherwise.
Example 1:
Input ["Trie", "insert", "search", "search", "startsWith", "insert", "search"] [[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]] Output [null, null, true, false, true, null, true] Explanation Trie trie = new Trie(); trie.insert("apple"); trie.search("apple"); // return True trie.search("app"); // return False trie.startsWith("app"); // return True trie.insert("app"); trie.search("app"); // return True
Constraints:
1 <= word.length, prefix.length <= 2000
word
andprefix
consist only of lowercase English letters.- At most
3 * 104
calls in total will be made toinsert
,search
, andstartsWith
.
Solution
class Node {
constructor() {
this.end = false;
this.children = {};
}
}
class Trie {
constructor() {
this.root = new Node();
}
insert(word) {
let r = this.root;
for (const c of word) {
if (!(c in r.children)) {
r.children[c] = new Node();
}
r = r.children[c];
}
r.end = true;
}
search(word) {
let r = this.root;
for (const c of word) {
if (!(c in r.children)) {
return false;
}
r = r.children[c];
}
return r.end;
}
startsWith(prefix) {
let r = this.root;
for (const c of prefix) {
if (!(c in r.children)) {
return false;
}
r = r.children[c];
}
return true;
}
}
/**
* Your Trie object will be instantiated and called as such:
* var obj = new Trie()
* obj.insert(word)
* var param_2 = obj.search(word)
* var param_3 = obj.startsWith(prefix)
*/
We will create our trie using nested dictionaries (encapsulated as a Node
) where the key is the character.