Product of Array Except Self
Problem
Given an integer array nums
, return an array answer
such that answer[i]
is equal to the product of all the elements of nums
except nums[i]
.
The product of any prefix or suffix of nums
is guaranteed to fit in a 32-bit integer.
You must write an algorithm that runs in O(n)
time and without using the division operation.
Example 1:
Input: nums = [1,2,3,4] Output: [24,12,8,6]
Example 2:
Input: nums = [-1,1,0,-3,3] Output: [0,0,9,0,0]
Constraints:
2 <= nums.length <= 105
-30 <= nums[i] <= 30
- The product of any prefix or suffix of
nums
is guaranteed to fit in a 32-bit integer.
Solution
/**
* @param {number[]} nums
* @return {number[]}
*/
var productExceptSelf = function(nums) {
const leftProduct = [1];
const rightProduct = [1];
for (let i = 0; i < nums.length; i++) {
leftProduct.push(leftProduct[i] * nums[i]);
rightProduct.push(rightProduct[i] * nums[nums.length - 1 - i]);
}
const res = [];
for (let i = 0; i < nums.length; i++) {
res.push(leftProduct[i] * rightProduct[nums.length - 1 - i]);
}
return res;
};
Notice that res[i] = sum(nums[0:i]) * sum(nums[i + 1:nums.length])
. Thus, we can first calculate left[i]
as the product of values starting from the left of nums
, and right[i]
as the product of values starting from the right of nums
beforehand in O(n)
. Note that we use 1
as the first value in both arrays, and don't include the final value (ie. ignore nums[nums.length - 1]
for left
and ignore nums[0]
for right
). Using left
and right
, we get that res[i] = left[i] * right[nums.length - 1 - i]
.
Follow-up
Can you solve the problem in O(1)
extra space complexity? (The output array does not count as extra space for space complexity analysis.)
Solution
/**
* @param {number[]} nums
* @return {number[]}
*/
var productExceptSelf = function(nums) {
const res = [];
let leftProduct = 1;
for (let i = 0; i < nums.length; i++) {
res.push(leftProduct);
leftProduct *= nums[i];
}
let rightProduct = 1;
for (let i = nums.length - 1; i >= 0; i--) {
res[i] *= rightProduct;
rightProduct *= nums[i];
}
return res;
};
To use only O(1)
extra space, we store left
in our output array res
. Next, we use a single variable to accumulate the values of right
, while directly using it to compute the answer res
.
For example, let nums = [4, 3, 2, 1]
. After the first loop, res = [1, 1 * 4, 1 * 4 * 3, 1 * 4 * 3 * 2] = [1, 4, 12, 24]
. After the second loop, res = [1 * 3 * 2 * 1 * 1, 4 * 2 * 1 * 1 , 12 * 1 * 1 , 24 * 1] = [6, 8, 12, 24]
.