Clone Graph
Problem
Given a reference of a node in a connected undirected graph.
Return a deep copy (clone) of the graph.
Each node in the graph contains a value (int
) and a list (List[Node]
) of its neighbors.
class Node { public int val; public List<Node> neighbors; }
Test case format:
For simplicity, each node's value is the same as the node's index (1-indexed). For example, the first node with val == 1
, the second node with val == 2
, and so on. The graph is represented in the test case using an adjacency list.
An adjacency list is a collection of unordered lists used to represent a finite graph. Each list describes the set of neighbors of a node in the graph.
The given node will always be the first node with val = 1
. You must return the copy of the given node as a reference to the cloned graph.
Example 1:
Input: adjList = [[2,4],[1,3],[2,4],[1,3]] Output: [[2,4],[1,3],[2,4],[1,3]] Explanation: There are 4 nodes in the graph. 1st node (val = 1)'s neighbors are 2nd node (val = 2) and 4th node (val = 4). 2nd node (val = 2)'s neighbors are 1st node (val = 1) and 3rd node (val = 3). 3rd node (val = 3)'s neighbors are 2nd node (val = 2) and 4th node (val = 4). 4th node (val = 4)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).
Example 2:
Input: adjList = [[]] Output: [[]] Explanation: Note that the input contains one empty list. The graph consists of only one node with val = 1 and it does not have any neighbors.
Example 3:
Input: adjList = [] Output: [] Explanation: This an empty graph, it does not have any nodes.
Constraints:
- The number of nodes in the graph is in the range
[0, 100]
. 1 <= Node.val <= 100
Node.val
is unique for each node.- There are no repeated edges and no self-loops in the graph.
- The Graph is connected and all nodes can be visited starting from the given node.
Solution
/**
* // Definition for a Node.
* function Node(val, neighbors) {
* this.val = val === undefined ? 0 : val;
* this.neighbors = neighbors === undefined ? [] : neighbors;
* };
*/
/**
* @param {Node} node
* @return {Node}
*/
var cloneGraph = function(node, visited = {}) {
if (!node) {
return null;
}
if (node.val in visited) {
return visited[node.val];
}
const copy = new Node(node.val);
visited[copy.val] = copy;
for (const neighbor of node.neighbors) {
copy.neighbors.push(cloneGraph(neighbor, visited));
}
return copy;
};
We will implement a DFS solution. We use DFS to recursively traverse the graph while copying each node
. We also keep track of which node
has already been visited, as we don't want the same node
to be copied twice or get stuck in an infinite cycle.