Skip to main content

Peak Index in a Mountain Array

Problem

Let's call an array arr a mountain if the following properties hold:

  • arr.length >= 3
  • There exists some i with 0 < i < arr.length - 1 such that:
    • arr[0] < arr[1] < ... arr[i-1] < arr[i]
    • arr[i] > arr[i+1] > ... > arr[arr.length - 1]

Given an integer array arr that is guaranteed to be a mountain, return any i such that arr[0] < arr[1] < ... arr[i - 1] < arr[i] > arr[i + 1] > ... > arr[arr.length - 1].

 

Example 1:

Input: arr = [0,1,0]
Output: 1

Example 2:

Input: arr = [0,2,1,0]
Output: 1

Example 3:

Input: arr = [0,10,5,2]
Output: 1

 

Constraints:

  • 3 <= arr.length <= 104
  • 0 <= arr[i] <= 106
  • arr is guaranteed to be a mountain array.

Solution

/**
* @param {number[]} arr
* @return {number}
*/
var peakIndexInMountainArray = function(arr) {
let lo = 0;
let hi = arr.length - 1;

while (lo <= hi) {
const mid = Math.floor((lo + hi) / 2);
if (arr[mid] < arr[mid + 1]) { // peak in range (mid, hi]
lo = mid + 1;
} else if (arr[mid - 1] > arr[mid]) { // peak in range [lo, mid)
hi = mid - 1;
} else { // peak in range [mid, mid]
return mid;
}
}
};

We will implement a binary search solution. Since we are trying to find the peak of the mountain, we only need to search on the half that is greater than arr[mid] (ie. by checking arr[mid - 1] and arr[mid + 1]). If both are less, then arr[mid] must already be the peak.