Path Sum
Problem
Given the root
of a binary tree and an integer targetSum
, return true
if the tree has a root-to-leaf path such that adding up all the values along the path equals targetSum
.
A leaf is a node with no children.
Example 1:
Input: root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22 Output: true Explanation: The root-to-leaf path with the target sum is shown.
Example 2:
Input: root = [1,2,3], targetSum = 5 Output: false Explanation: There two root-to-leaf paths in the tree: (1 --> 2): The sum is 3. (1 --> 3): The sum is 4. There is no root-to-leaf path with sum = 5.
Example 3:
Input: root = [], targetSum = 0 Output: false Explanation: Since the tree is empty, there are no root-to-leaf paths.
Constraints:
- The number of nodes in the tree is in the range
[0, 5000]
. -1000 <= Node.val <= 1000
-1000 <= targetSum <= 1000
Solution
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @param {number} targetSum
* @return {boolean}
*/
var hasPathSum = function(root, targetSum) {
if (!root) {
return false;
} else if (!root.right && !root.left && root.val === targetSum) {
return true;
} else {
const newSum = targetSum - root.val;
return hasPathSum(root.left, newSum) || hasPathSum(root.right, newSum);
}
};
Traverse the tree root
while updating targetSum
after each recursive call. When a leaf (ie. node with no left and right child) is reached, check whether targetSum = 0
.